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1. There is considerable discussion at the present time in regard to the solutions of a quasilinear para-
bolic equation of the form

o
FIT)

n—1 @uk

du*
dx

ox

)-—w;u =Lu,k,y>0,m>=0,kn>1, 1.1)

which is used to describe various nonlinear transport processes. The dependence of the transport and absorp-
tion coefficients on the transported quantity u and its gradient du/8x is approximated here by a power function.
In particular, for n=1 and k=1 Eq. (1.1) coincides with the nonlinear heat-conduction equation discussed in {1];
for k=1 and n=1 it is the momentum transport equation for a nonlinearly viscous non- Newtonian fluid [2]; the
case k=2, m =0 corresponds to the motion of the indicated electrically conducting fluid in a laminar boundary
layer in a transverse magnetic field {3]. In the general case of arbitrary n, k, and m Eq. (1.1) is known as the
turbulent filtration equation [1, 4] with a nonlinear sink.

An important feature of the transport processes described by Eq. (1.1) is the possible existence of a
frontal surface S, t) =0 separating the region with u(x, t) =0 and the region of spatial localization of the trans-
ported quantity, where ux, t) > 0 (see, e.g., [1-4]). The form of the function S=8, t) in the case of the Cauchy
problem for Eq. (1.1) has been investigated in [5], where, following [6, 7], the authors demonstrate the possi-
bility of metastable states of the solution. In such a state, during a finite time interval t € [0, T] the functlon
S(x, t) depends only on the coordinate x, S&, t) = Sk).

Metastable states are possible, in particular, in the transition from one steady-state solution to another
steady~state solution. In this connection we demonstrate the possible existence of metastable states in a bound-
ary-value problem for Eq. {1.1) and give bounds on the duration of a metastable state, which are confirmed by
direct numerical calculations.

We consider Eq. (1.1) on the set
G=R_XR, = {{z, ):z=R_, t= Ry}, 1.2)
where R, = {t:1>0}, R_. = {z: < 0}.

We denote by Q = {(z, ¢) = G; u(z, t) >0} the region of localization of the transported quantity, G\ Q =
{(z, 1) =G ufx, t) =0}, We specify that the boundary condition is monotonic and bounded:

w0, 1) = @(t), @(ts) = @(ty), 15 t, > t,, Uy = max gt) << oo. (1.3)
‘We assume that the initial condition is finite and specify it in the ™atural " form
n41
u(z,0) = u, (2) = {A (1 - ;;)k"_’"’ 7, <z<0,kn>m, (1.4)
0, — 00 < T T,
where

k]

A [ v (kn — m)n+1 (__ xo)n-i—l 1/(hn—m)
n{k -+ m)(kn L )"

and the function ux, 0) satisfies the differential equation Lu;=0, We assume that in the region Q the derivative
ou / dx =0; under this condition Eq. (1.1) is written in the form

du 1.5)

5 .
o Oz(u)—l‘?u =0.
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We show that the solution of problem (1.3)-(1.5) is metastably localized and the metastable localization
time T satisfies the inequality

hn—m
UO

T~ (k- m) (kn — 1)

/At;n—q V(1) (kn—m)n+1’ ECHAR M & [1, kn[, Al(k, n, tg, ,1‘0):: const.

We first prove that the solution of problem (1.3)-(1.5) is metastably localized if m€[J, kn]. We investi-
gate the auxiliary problem for an equation of the form

with the initial condition
oz, 0) = 4,(1 — zlx)erDitn=1 2 e ]z, 0] ' 1.7
and the boundary condition |
o0, 1) = 4,(1 — t/t,)—ten—1), (1.8)
. 1
A, = {[%F%}Mﬂw (£, 2) =0, (%%k)n (g, t) = 0.

The solution of the auxiliary problem (1.6)-(1.8) has the form [6]

0 e 1) = {A‘ (=27 (=5 T 0.9)
0,

where t €[0, t,], x € [xy, 0]. Tt is seen that the solution (1.9) is metastably localized for t € [0, {,[. Because of
the monotonic behavior of the solution u(x, t) of problem (1.3)-(1.5) as a function of the initial and boundary
condition and the fact that y> 0 the function (1.9) majorizes the solution of this problem with the appropriate
specification of the parameter t;, inferred from a comparison of Uy=A and A;. Consequently, the solution of
problem (1.3)-(1.5) is metastably localized if m €[1, kn],

From a comparison of the boundary conditions (1.3) and (1.8) we can deduce a lower bound on the meta-
stable localization time in problem (1.3)-(1.5) t €[0, T], T =t,:

phn—m
T>t,= (2 (& 4+ m) (kn — 1)
- (A‘im_l )V(kn—m)"+1(k+1)' 1.10)

E can be shown with the aid of the comparison theorem [8] that the boundary of the regionof localization
in problem (1.3)-(1.5) is necessarily set in motion, S, t)=S), for t >t, i.e., the solution of the problem is
indeed metastable. This is most simply accomplished in the case y=0. Accordingly, we consider the boundary
problem for Eq. (1.6) for the function w; =w (x, t) with the boundary and initial conditions

o,(z, 0) = 0, ©,(0, £) = U, = const >0, U; <min ¢ (¥). 1.11)
The boundary-value problem (1.6) (1.11) for y=0 is self-similar [9]. I we introduce the self-similar variable

] =x/xf(t), where x¢¢) is the boundary of the support of the solution and is given by the equation S¢&), t) =0,
along with the new dependent variable w; =Uif; f1), we reduce problem (1.5), (1.11) to

Bn %1‘ + d—dn [Sigﬂ s %{_’i}" =0,n(0,1], f,(0)=1, f,(1) =0. 1.12)
1
From the self-similarity condition we have
Zp=— [(n +1) ﬁU;‘"“lt]I/(nH)-
We evaluate the constant 8> 0 in problem (1.12) from the coundition of zero net flow at the front df%‘ (1)/dn =0.

The results of a nunerical calculation of the parameter f=8(k, n) in the special casen=1, obtained by the
collocation method after preliminary quasilinearization, are shown in Fig. 1.

By virtue of the comparison theorem [8] we have the inequalities u(x, t) > w; &, t}, Uy <ming t), Conse-
quently, from the inequality x;€;)=x, we deduce an upper bound for the metastable localization time of the solu-
tion: 7 < tl — (__ xo)n+1/ﬁ (12 + 1) Ullln—l.

The existence of metastable states for the function w, =w, (x, t) in the case y=0 can be demonstrated by
solving numerically the boundary-value problem comprising Eq. (1.6), the conditions
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and the initial condition (1.4). On the basis of the comparison theorem, with respect to the initial and boundary
conditions the solution of problem (1.3)~(1.5) majorizes the solution of problem (1.4), (1.5), (1.13), u, t)= w,(,
t). ¥ k>1+1/n, the numerical solution of problem (1.4), (1.5), (1.13) shows that for times t > T the first-order
discontinuity front is set in motion, Consequently, the solution of problem (1.3)~(1.5) is metastable.

2. To confirm the foregoing bounds we have carried out some numerical calculations. We used an im-~
plicit differencing scheme [10]. The position of the front was determined approximately where the solution
acquired the order of magnitude of the computational error. The time step T and the space step h were made
equal to 0.0364 and 0.04 respectively. As an example, Fig. 2 shows the evolution of the solution of problem
(1.3)-(1.5) for n=3, k=2, y=1, m=2, x,=—1, ¢ ¢) =2uy(0) =0.878, with the curves numbered asfollows: 1) t=71;
2)t=31; 3)t=T=107; 4) t =207, I is evident from the graph that the time of onset of motion of the surface can
be determined with error O®) from the variation of the derivative du/8x as X =Xg ¢)4+0- Ast-— the solution
goes over to a new steady state, corresponding to the altered boundary condition.

It is clear that the duration T of the metastable state depends considerably on the form of the function
@ t), given identical values of ¢ (0) and @ ¢=). Accordingly, we have calculated the duration T of the metastable
state for various functions ¢ =¢ ¢). The results are shown in Fig, 3 for n=1, y=1, m=}, x,=—1, The curves

are numbered as follows: ,
4, (0) (1 4-7), teT,
¢ (8 =

2uy (0), t = T}

[uo 0) exp (%), teT,
) =
2uy (0), te T,

o(t) = 2uy(0), t = T,

where T={t:t>0, ¢ t)<2uy(0)}. The dashed curve in Fig. 2 corresponds to the lower bound ofthe duration of
the metastable state according to relation (1,10). All the numerical calculations exhibit good consistency with
the derived bounds and corroborate the qualitative analysis of the problem.
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STRUCTURES OF THE CONJUGATE SATURATION
AND CONCENTRATION DISCONTINUITIES |

IN THE DISPLACEMENT OF OIL BY A SOLUTION
OF AN ACTIVE MATERIAL

O. M. Alishaeva; V. M. Entov, : UDC 532.546
and A. F. Zazovskii

A general description of the displacement of oil by a solution of an active material not only in the basic
case of a single active factor, but also in more complicated situations is presented in [1-5]. Here a central
part is played by the scope for constructing a solution in a large~scale approximation, i.e., neglecting diffusion
processes of various types (capillarity, diffusion proper, and thermal conductivity). These processes have
marked effects on the solution only in zones where the variables alter sharply, which correspond to discon~
tinuities in the large-scale approximation. Here we examine the fine structure of the transition zones. The
results may be of value in estimating the limits to the application of the large-scale approximation and to the
failure times for the layer of active material, as well as in developing numerical and approximate methods.

1. Formulation: External Solution. We consider the one~dimensional frontal displacement of oil by a
solution of an active material. We write the equations for the phase infiltration law (=1 for water and i =2
for oil) and the conservation equations for water, oil, and the active material on the basis that the mass con~
centrations of the material inthewater c and in the oil ¢ are small, while the porosity m, permeability k,
and phase densities py and p, are constant:

up = —(kfu(s, o) mwil))opi/az (i =1, 2), a.1)
p: — P1 =P = () (),
mos/ot -+ du,/dx = 0, —mds/dt 4 du,/dx = 0,

m s [res + 9 (0) (1 — ) + 2 (] + 5 wew + 0 0 wa] = 57 (D)

Here s is the water content; mp,a, mass of sorbed material in unit volume of the porous medium; f;, yi,
pis phase permeability, viscosity, and pressure for phase i; D, diffusion coefficient for the active material;
p, capillary pressure, whose dependence on the surface tension incorporates the coefficient y(c); J, a Leverett
function; x, coordinate; t, time; and w =p,/p,.

We introduce the dimensionless variable
& =2/L, ¢ = ugt/L, ui = ui/ u,, Pi = pi/Bp, uy = kAp/p; (0) Ly
wi = w5/t (0), I’ = DIDy, ¥ (€) = 7 () (0), & = y (0)/Ap, v = Dy/uoL,

where L, Ap, Dy are the characteristic values of the size of the flow region, the external pressure difference,
and the diffusion coefficient,
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